География и природные ресурсы

СПЕКТРАЛЬНЫЙ АНАЛИЗ ФИЗИЧЕСКИХ, ХИМИЧЕСКИХ И БИОЛОГИЧЕСКИХ ПОКАЗАТЕЛЕЙ ПОЧВ В ДИАПАЗОНЕ ВИДИМЫХ И КОРОТКИХ ИНФРАКРАСНЫХ ВОЛН: СОВРЕМЕННЫЕ ВОЗМОЖНОСТИ И ПЕРСПЕКТИВЫ

Мамедов Э.Э., Фейзиев Ф.М., Исмаилов А.И., Бабаев М.П.

Аннотация.  В данной работе представляется ан­нотация исследований характеристик почв по спек­троскопическому моделированию в диапазоне ви­ди­мых и коротких инфракрасных волн (Vis-NIR). Проанализированы физические основы спектро­ско­пии видимых и коротких инфракрасных волн (Vis-NIR); факторы, влияющие на спектр отражения; спек­тральные обертоны и комбинации, связанные с ос­новными компонентами почв; подготовка образ­цов почв для спектральных измерений, обработка спек­тральных данных и трансформация. В нас­то­ящее время методы скоростной спектроскопической ко­либрации, достоверные спектральные диапазоны для прогностических моделей, и факторы, вли­я­ющие на моделирование, представлены в лице мно­гочисленных исследований. Преимущество техно­логии Vis-NIR состоит в том, что при определении нескольких почвенных показателей не исполь­зу­ются никакие химические реагенты и широкие ме­тоды применения (анализ почв, мониторинг, цифро­вое картирование, моделирование окружающей среды и т. д.). Развитие моделей колибрации и ин­формационной базы в проводимых исследованиях за последние 20 лет, дает возможность технологии Vis-NIR перейти с экспериментальной стадии  на стадию внедрения. Наравне с этим развитие тех­но­логии базы обработки показывает большой по­тен­циал роста методов спектральной колибрации.

Ключевые слова: свойства почвы, спек­тро­ско­пия отражения, методы калибровки, обзор, длина волны.

 

ЛИТЕРАТУРА 

  1. Adeline K.R.M., Gomez C., Gorretta N., Roger J.M. Predictive ability of soil properties to spectral degradation from laboratory Vis-NIR spectroscopy dataç Geoderma, vol. 288, 2017, pp. 143–153
  2. Barnes, R.J., Dhanoa, M.S., Lister, S.J. Stan­dard normal variate transformation and de-trending of near-infrared diffuse reflectance spectra, Appl. Spec­trosc. 43, 1989, pp.772–777
  3. Bayer A., Bachmann M., Muller A., Kaufmann H. A comparison of feature-based MLR and PLS reg­ression techniques for the prediction of three soil cons­tituents in a degraded South African ecosystem, Applied and Environmental Soil Science, vol. 2012, Article ID 971252, 2012, 20 p
  4. Ben Dor E., Chabrillat S., Dematte J.A.M., Taylor G.R., Hill J. Using imaging spectroscopy to study soil properties. Remote Sens. Environ. 113, 2009, pp.38-55
  5. Ben-Dor E, Irons J.R, Epema G.F. Soil ref­lectance. In: Rencz AN [ed]. Remote sensing for the earth sciences: Manual of remote sensing. Wiley, Sons, 1999, New York. pp.111-188
  6. Ben-Dor E., Banin A. Near-infrared analysis as a rapid method to simultaneously evaluate several soil properties. Soil Sci. Soc. Am. J. 59, 1995, pp.364-372
  7. Bilgili A.V., van Es H.M., Akbas F., Durak A., Hively W.D. Visible-near infrared reflectance spectro­scopy for assessment of soil properties in a semiarid area of Turkey. J Arid Environment 74, 2010, pp.229–238
  8. Bo S., Rossel R.A., Mouazen A.M., Wetterlind J. Chapter five–visible and near infrared spectroscopy in soil science, Advances in Agronomy, vol. 107, no. 107, 2010, pp.163–215
  9. Brown D.J., Bricklemyer R.S., Miller P.R. Validation requirements for diffuse reflectance soil characterization models with a case study of VNIR soil C prediction inMontana. Geoderma, 129, 2005, pp.251–267
  10. Brown D.J., Shepherd K.D., Walsh M.G., Dewayne Mays M., Reinsch T.G. Global soil cha­racterization with VNIR diffuse reflectance spectroscopy. Geoderma, 132, 2006, pp.273–290
  11. Burns R.G., Mineralogical Applications of Crystal Field Aeory, Cambridge University Press, Cam­bridge, UK, 2nd edition, 1993.
  12. Chang C.W., Laird D.A., Mausbach M.J., Maurice J., Hurburgh J.R. Near-Infrared reflectance spectroscopy – principal components regression ana­lyses of soil properties. Soil Science Society of America Journal 65, 2001, pp.480–490
  13. Chang C.W., Laird D.A. Near-infrared ref­lectance spectroscopic analysis of soil C and N. Soil Sci. 167, 2002, pp.110–116.
  14. Chen J., Chen J., Wang Q., Zhang Y., Ding H., Huang Z. Retrieval of soil dispersion using hype­rspectral remote sensing, Journal of the Indian Society of Remote Sensing, vol. 44, no. 4, 2016, pp.563–572
  15. Clark R.N., Spectroscopy of rocks and mi­nerals, and principles of spectroscopy, in Manual of Remote Sensing, Vol. 3, John Wiley and Sons, New York, NY, USA, 1999, pp.3–58
  16. Clark R.N., Roush T.L. Reflectance spectroscopy–quantitative-analysis techniques for re­mote-sensing applications. J. Geophys. Res. 89 [NB7], 1984, pp.6329– 6340
  17. Conforti M., Buttafuoco Vis-NIR Spec­troscopy for Determining Physical and Chemical Soil Properties: An Application to an Area of Southern Italy, Global Journal of Agricultural Innovation, Research & Development, 2014, pp.17-26
  18. Cozzolino D., Mor´on A. The potential of near-infrared reflectance spectroscopy to analyse soil che­mical and physical characteristics, Agric. Sci., 140, 2003, pp.65–71
  19. Curcio D., Ciraolo G., D’Asaro F., Minacapilli M. Prediction of soil texture distributions using VNIR-SWIR reflectance spectroscopy. Procedia Envi­ronmental Sciences 19, 2013, 494-503
  20. Daniel K.W., Tripathi N.K., Honda K. Arti­ficial neural network analysis of laboratory and in situ spectra for the estimation of macronutrients in soils of Lop Buri [Thailand]. Aust. J. Soil Res. 41, 2003, pp.47–59
  21. Dardenne P., Sinnaeve G., Baeten V. Mult­ivariate calibration and chemometrics for near infrared spectroscopy: Which method? Near Infrared Spectrosc., 8, 2000, pp.229–237
  22. Dufrechou G., Grandjean G., Bourguignon A., Geometrical analysis of laboratory soil spectra in the short-wave infrared domain: clay composition and estimation of the swelling potential, Geoderma, vol. 243-244, 2015, pp.92–107
  23. Fang Q., Hong H., Zhao L., Kukolich S., Yin K., Wang C. Visible and Near-Infrared Reflectance Spectroscopy for Investigating Soil Mineralogy: A Review. Hindawi Journal of Spectroscopy Volume 2018, pp. 1-14. https://doi.org/10.1155/2018/3168974
  24. Farmer V. C. Infra-red spectroscopy in mineral chemistry, in Physicochemical Methods of Mineral Analysis, Springer, Berlin, Germany, 1975, pp.357–388
  25. Feyziyev F., Babayev M., Priori S., L’Abate G. Using visible-near infrared spectroscopy to predict soil properties of Mugan Plain, Azerbaijan. Journal of Soil Science 6, 2016, pp.52-58
  26. Fidencio P.H., Poppi R.J., de Andrade J.C. Determination of organic matter in soils using radial basis function networks and near infrared spectroscopy, Anal. Chim. Acta 453, 2002, pp.125–134
  27. Geladi P., McDougall D., Martens H. Line­arization and scatter correction for near infrared reflectance spectra of meat. Appl Spectrosc 39, 1985, pp.491-500
  28. Goetz A., Chabrillat S., Lu Z. Field reflectance spectrometry for detection of swelling clays at cons­truction sites, Field Analytical Chemistry and Technology, vol. 5, no. 3, 2001, pp.143–155
  29. Gomez C., Lagacherie P., Coulouma G. Continuum removal versus PLSR method for clay and calcium carbonate content estimation from laboratory and airborne hyperspectral measurements, Geoderma 148, 2008, pp.141–148.
  30. Grunwald S., Thompson J.A., Boettinger J.L. Digital soil mapping and modeling at continental scalese finding solutions for global issues. Soil Sci. Soc. Am. J. 75, 2011, pp.1201-1213
  31. Guerrero C., Zornoza R., Gomez, I., Mataix-Beneyto, J. Spiking of NIR regional models using samples from target sites: effect of model size on prediction accuracy. Geoderma 158, 2010, pp.66-77
  32. Hunt G.R., Salisbury J.W. Visible and infrared spectra of minerals and rocks. Mod Geol 2, 1970, pp.23–30
  33. Liu W.D., Baret F., Gu X.F., Tong Q.X., Zheng L.F., Zhang B. Relating soil surface moisture to reflectance. Remote Sens. Environ. 81, 2002, pp.238–246
  34. Louis B.P., Saby N.P.A., Orton T.G., Lacarce E., Boulonne, L., Jolivet, C., Ratié, C., Arrouays, D. Statistical sampling design impact on predictive quality of harmonization functions between soil monitoring networks. Geoderma 213, 2014, pp.133-143
  35. Lucà F., Conforti M., Matteucci G., Buttafuoco G. Prediction of Organic Carbon and Nitrogen in Forest Soil Using Laboratory Visible and Nearinfrared Spectroscopy. Near Surface Geoscience, 2015
  36. Malley D.F., Martin P.D., Ben-Dor E. Application in analysis of soils. In Near-Infrared Spectroscopy in Agriculture, Agronomy 44. Roberts, C.A., Workman, J., Jr., and Reeves, J.B., III, Eds. American Society of Agronomy, Crop Science Society of America, Soil Science Society of America: Madison, WI, 2004, pp.729–784.
  37. Mammadov E., Denk M., Riedel F., Kaźmierowski, Lewinska K., Glaesser C. Visible and near-infrared reflectance spectroscopy for assessment of soil properties in the Caucasus Mountains, Azerbaijan, Journal of Communications in Soil Science and Plant Analysis, 51:16, 2020, 2111-2136.
  38. Martens H., Næs T. Multivariate calibration. JohnWiley & Sons, Chichester, United Kingdom, UK. 1989
  39. Miller C.E. Chemical principles of near-infrared technology. In ‘‘Near-Infrared Technology in the Agricultural and Food Industries’’ [P. Williams and K. Norris, Eds.], American Association of Cereal Chemists Inc., St. Paul, MN., 2001, pp.19–37
  40. Minasny B., McBratney A.B., Bristow K.L. Comparison of different approaches to the development of pedotransfer functions for water-retention curves. Geoderma, 93, 1999, pp.225–253
  41. Mortimore J.L., Marshall L.J.R., Almond M.J., Hollins P., Matthews W. Analysis of red and yellow ochre samples from Clearwell Caves and Catalhoyuk by vibrational spectroscopy and other techniques. Spectrochim. Acta A Mol. Biomol. Spectrosc. 60, 2004, pp.1179–1188
  42. Mouazen A.M., Kuang B., De Baerdemaeker J., Ramon H. Comparison among principal component, partial least squares and back propagation neural network analyses for accuracy of measurement of selected soil properties with visible and near infrared spectroscopy. Geoderma, 2010
  43. Naes T., Isaksson T., Kowalski B. Locally weighted regression and scatter correction for near-infrared reflectance data. Chem., 62, 1990, 664–673
  44. Nawar S., Buddenbaum H., Hill J., Kozak J., Mouazen A.M. Estimating the soil clay content and organic matter by means of different calibration methods of Vis-NIR diffuse reflectance spectroscopy. Soil & Tillage Research 2016
  45. Nduwamungu C., Ziadi N., Tremblay G.F., Parent L. ´ E., Tremblay G.F., Thuri`es B. Near-infrared reflectance spectroscopy prediction of soil properties: Effects of sample cups and preparation. Soil Sci. Soc. Am. J., 73, 2009, pp.1896–1903
  46. Nocita M. Soil Spectroscopy: An Alternative to Wet Chemistry for Soil Monitoring. Advances in Agronomy Volume 132, 2015, pp.139-159
  47. Norris K.H., Williams P.C., Optimization of mathematical treatments of raw near-infrared signal in the measurement of protein in hard red spring wheat. I. influence of particle size, Cereal Chemistry, vol. 61, no. 2, 1984, pp.158–165
  48. Owen A. Fundamentals of Modern UV-visible Spectroscopy. Agilent Technologies. Pimstein, A., Notesco, G., Ben Dor, E., 2011. Performance of three identical spectrometers in retrieving soil reflectance under laboratory conditions. Soil Sci. Soc. Am. J. 75, 2000, pp.746-759.
  49. Recena R., Fernández-Cabanás V.M., Delgado A. Soil fertility assessment by Vis-NIR spectroscopy: Predicting soil functioningrather than availability indices. Geoderma 337, 2019, pp.368-374
  50. Reeves J.B., III. Near- versus mid-infrared diffuse reflectance spectroscopy for soil analysis emphasi­zing carbon and laboratory versus on-site analysis: Where are we and what needs to be done? Geoderma, 158, 2010, pp.3–14.
  51. Robinson N. J., Kitching M., 3D distribution of phyllosilicate clay minerals in western Victoria, Geoderma, vol. 284, 2016, pp.152–177
  52. Saeys W., Mouazen A.M., Ramon H. Potential for onsite and online analysis of pig manure using visible and near infrared spectroscopy. Biosyst Eng 91, 2005, pp.393–402
  53. Sanchez P.A., Ahamed S., Carre F., Hartemink A.E., Hempel J., Huising J., Lagacherie P., McBratney A.B., McKenzie N.J., Mendoca-Santos M.L., Minasny B., Montanarella L., Okoth P., Palm C.A., Sachs J.D., Sheperd K.S., Vagen T.G., Vanlauwe B., Walsh M.G., Winowiecki L.A., Zhang G.L., 2009. Digital soil map of the world. Science 325, pp.680-681.
  54. Sarathjith M.C., Das B.S., Wani S.P., Sahrawat K.L., Variable indicators for optimum wavelength selection in diffuse reflectance spectroscopy of soils, Geoderma, vol. 267, 2016, pp. 1–9
  55. Savitzky A., Golay M.J.E. Smoothing and differentiation of data by simplified least squares procedures, Chem., 36, 1964, pp.1627–1639
  56. Savvides A., Corstanje R., Baxter S.J., Rawlins B.G., Lark R.M. The relationship between diffuse spectral reflectance of the soil and its cation exchange capacity is scale-dependent, Geoderma 154, 2010, pp.353–358
  57. Schulze D.G. An introduction to soil mineralogy. In ‘Soil Mineralogy with Environmental Applications [J.B.Dixon and D.G.Schulze, Eds.], Soil Science Society of America Inc., Madison, WI., 2002, pp.1–35
  58. Shenk J.S., Westerhaus M.O., Berzaghi P. Investigation of a LOCAL calibration procedure for near infrared instruments, Near Infrared Spectrosc., 5, 1997, pp.223–232
  59. Shepherd K.D., Walsh M.G. Development of reflectance spectral libraries for characterization of soil properties, Soil Sci. Soc. Am. J., 66, 2002, pp.988–998
  60. Sherman D.M., Waite T.D. Electronic spectra of Fe3þ oxides and oxyhydroxides in the near infrared to ultraviolet, Am. Mineral. 70, 1985, pp.1262–1269
  61. Shibusawa S., Made Anom S.W., Sato H.P., Sasao A. Soil mapping using the real-time soil spectrometer. In ‘‘ECPA 2001’’ [G. Gerenier and S. Blackmore, Eds.], Montpellier, Montpellier, France. Shonk, J. L., Vol. 2, 2001, pp.485–490.
  62. Soriano-Disla J.M., Janik L.J., Viscarra Rossel R.A., MacDonald L.M., McLaughlin M.J. The performance of visible, near-, and mid-infrared reflectance spectroscopy for prediction of soil physical, chemical, and biological properties. Appl. Spectrosc. Rev. 49, 2014, pp.139-186
  63. Stenberg B., Viscarra Rossel R.A., Mouazen A.M., Wetterlind J. Visible and near infrared spectroscopy in soil science. Agron., 107, 2010, pp.163–215
  64. Tian Y., Zhang J., Yao X., Cao W., Zhu Y. Laboratory assessment of three quantitative methods for estimating the organic matter content of soils in China based on visible/ near-infrared reflectance spectra, Geoderma, vol. 202-203, 2013, pp.161–170
  65. Udelhoven T., Emmerling C., Jarmer T. Quantitative analysis of soil chemical properties with diffuse reflectance spectrometry and partial leastsquare regression: A feasibility study. Plant and Soil 251[2], 2003, pp.319-329
  66. Vasat R., Kodesova R., Boruvka L., Klement A., Jaksık O., and Gholizadeh A., Consideration of peak parameters Journal of Spectroscopy 13 derived from continuum-removed spectra to predict extractable nutrients in soils with visible and near-infrared diffuse reflectance spectroscopy [VNIR-DRS], Geoderma, vol. 232-234, 2014, pp.208–218
  67. Varmuza, K. and Filmoser, P. Introduction toMultivariate Statistical Analysis in Chemometrics. Taylor & Francis, Boca Raton, FL., 2009
  68. Viscarra Rossel R.A. Fine-resolution multiscale mapping of clay minerals in Australian soils me­asured with near infrared spectra, Journal of Geo­physical Research, vol. 116, no. F4, 2011
  69. Viscarra Rossel R.A., Chappell A., De Caritat P., Mckenzie N.J. On the soil information content of visible–near infrared reflectance spectra, J. Soil Sci., 62, 2011, pp.442–453
  70. Viscarra Rossel R.A., Webster R. Predicting soil properties from the Australian soil visible–near infrared spectroscopic database. J. Soil Sci., 63, 2012, pp.848–860
  71. Viscarra Rossel RA, Behrens T. Using data mining to model and interpret soil diffuse reflectance spectra, Geoderma, 2009, pp.12-25
  72. Viscarra Rossel R.A. Robust modelling of soil diffuse reflectance spectra by ‘‘bagging-partial least squares regression, J. Near Infrared Spectrosc. 15, 2007, pp.39–47
  73. Viscarra Rossel R.A., Lark R.M. Improved analysis and modelling of soil diffuse reflectance spectra using wavelets. Eur. J. Soil Sci. 60, 2009, pp.453–464
  74. Viscarra Rossel R.A., Adamchuk V.I., Sudduth K.A., McKenzie N.J., Lobsey C. Proximal soil sensing. An effective approach for soil measurements in space and time. Agron., 113, 2011, pp.237–282
  75. Viscarra Rossel R.A., Cattle S.R., Ortega A., Fouad Y. In situ measurements of soil colour, mineral composition and clay content by viseNIR spectroscopy. Geoderma 150, 2009, pp.253-266
  76. Viscarra Rossel R.A., Walvoort D.J.J., McBratney A.B., Janik L.J., Skjemstad J.O. Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties. Geoderma 131, 2006, pp.59-75
  77. Viscarra-Rossel R.A., McBratney A.B. Soil chemical analytical accuracy and costs Implications from precision agriculture, Aust. J. Exp. Agric. 7, 1998, pp.765–775
  78. Weng Y., Gong P.,Zhu Reflectance spectroscopy for the assessment of soil salt content in soils of the Yellow River Delta of China. International Journal of Remote Sensing 29-19, 2008, pp.511-553
  79. Williams P.C. Variables affecting near-infrared reflectance spectroscopy. In Near-Infrared Technology in the Agricultural and Food Industries, 1st ed., Williams, P.C. and Norris, 1987
  80. Wu Y., Junfeng Ji.J.C., Gong P., Tian Q., Ma H.A. Mechanism Study of Refl ectance Spectroscopy for Investigating Heavy Metals in Soils, SSSAJ: Volume 71, Number 3. 2007, pp.918-926
  81. Zude M., Optical monitoring of fresh and processed agricultural crops, in Contemporary Food Engineering, CRC Press, Boca Raton, FL, USA, 2008

 

Принята к публикации: 28 октября 2022 г.

Скачать статью