Vis-NIR SPECTROSCOPIC ANALYSIS OF PHYSICAL, CHEMICAL AND BIOLOGICAL PROPERTIES OF SOIL: PRESENT STATUS AND PERSPECTIVES
Mammadov E.E., Feyziyev F.M., Ismailov A.I., Babayev M.P.
Annotation. This study reviews state-of-the art regarding visible and near-infrared (Vis-NİR) spectroscopic modeling of soil properties. The main emphasis was given to characterising the principles of Vis-NİR spectroscopy, factors affecting soil spectrum, fundamental vibrations and combinations, preparation of soil samples for spectral measurements, pre-processsing and transformations of the spectral data. Furthermore, multivariate calibration methods, important wavelengths for predictive models and factors affecting model performances were comprehensively characterized with respect to multiple study cases. Spectral reflectance and absorption features of soil is attributed to soil mineralogy, water and organic matter content as well clay type and content. The review of large amount of published studies show that the robustness of the prediction models was dependent multiple factors, such as accurateness of reference data, spectral measurements and pretreatment methods, modeling approach and the number of samples involved in calibration. The main superiority of Vis-NİR spectroscopy is that this technique is non-destructive, cost-effective and cpapble of determining multiple soil properties from a single spectrum. Recent studies have significantly developed methods of calibration and spectral databases that necessitates its application from experimental to operational phase. In spectroscopic modeling, linear regression models, especially partial least squares regression model remains most used. Meanwhile, the recent development of data mining techniques may pave the way for improving calibration methods.
Keywords: soil properties, reflectance spectroscopy, calibration methods, overview, wavelength
REFERENCES
- Adeline K.R.M., Gomez C., Gorretta N., Roger J.M. Predictive ability of soil properties to spectral degradation from laboratory Vis-NIR spectroscopy dataç Geoderma, vol. 288, 2017, pp. 143–153
- Barnes, R.J., Dhanoa, M.S., Lister, S.J. Standard normal variate transformation and de-trending of near-infrared diffuse reflectance spectra, Appl. Spectrosc. 43, 1989, pp.772–777
- Bayer A., Bachmann M., Muller A., Kaufmann H. A comparison of feature-based MLR and PLS regression techniques for the prediction of three soil constituents in a degraded South African ecosystem, Applied and Environmental Soil Science, vol. 2012, Article ID 971252, 2012, 20 p
- Ben Dor E., Chabrillat S., Dematte J.A.M., Taylor G.R., Hill J. Using imaging spectroscopy to study soil properties. Remote Sens. Environ. 113, 2009, pp.38-55
- Ben-Dor E, Irons J.R, Epema G.F. Soil reflectance. In: Rencz AN [ed]. Remote sensing for the earth sciences: Manual of remote sensing. Wiley, Sons, 1999, New York. pp.111-188
- Ben-Dor E., Banin A. Near-infrared analysis as a rapid method to simultaneously evaluate several soil properties. Soil Sci. Soc. Am. J. 59, 1995, pp.364-372
- Bilgili A.V., van Es H.M., Akbas F., Durak A., Hively W.D. Visible-near infrared reflectance spectroscopy for assessment of soil properties in a semiarid area of Turkey. J Arid Environment 74, 2010, pp.229–238
- Bo S., Rossel R.A., Mouazen A.M., Wetterlind J. Chapter five–visible and near infrared spectroscopy in soil science, Advances in Agronomy, vol. 107, no. 107, 2010, pp.163–215
- Brown D.J., Bricklemyer R.S., Miller P.R. Validation requirements for diffuse reflectance soil characterization models with a case study of VNIR soil C prediction inMontana. Geoderma, 129, 2005, pp.251–267
- Brown D.J., Shepherd K.D., Walsh M.G., Dewayne Mays M., Reinsch T.G. Global soil characterization with VNIR diffuse reflectance spectroscopy. Geoderma, 132, 2006, pp.273–290
- Burns R.G., Mineralogical Applications of Crystal Field Aeory, Cambridge University Press, Cambridge, UK, 2nd edition, 1993.
- Chang C.W., Laird D.A., Mausbach M.J., Maurice J., Hurburgh J.R. Near-Infrared reflectance spectroscopy – principal components regression analyses of soil properties. Soil Science Society of America Journal 65, 2001, pp.480–490
- Chang C.W., Laird D.A. Near-infrared reflectance spectroscopic analysis of soil C and N. Soil Sci. 167, 2002, pp.110–116.
- Chen J., Chen J., Wang Q., Zhang Y., Ding H., Huang Z. Retrieval of soil dispersion using hyperspectral remote sensing, Journal of the Indian Society of Remote Sensing, vol. 44, no. 4, 2016, pp.563–572
- Clark R.N., Spectroscopy of rocks and minerals, and principles of spectroscopy, in Manual of Remote Sensing, Vol. 3, John Wiley and Sons, New York, NY, USA, 1999, pp.3–58
- Clark R.N., Roush T.L. Reflectance spectroscopy–quantitative-analysis techniques for remote-sensing applications. J. Geophys. Res. 89 [NB7], 1984, pp.6329– 6340
- Conforti M., Buttafuoco Vis-NIR Spectroscopy for Determining Physical and Chemical Soil Properties: An Application to an Area of Southern Italy, Global Journal of Agricultural Innovation, Research & Development, 2014, pp.17-26
- Cozzolino D., Mor´on A. The potential of near-infrared reflectance spectroscopy to analyse soil chemical and physical characteristics, Agric. Sci., 140, 2003, pp.65–71
- Curcio D., Ciraolo G., D’Asaro F., Minacapilli M. Prediction of soil texture distributions using VNIR-SWIR reflectance spectroscopy. Procedia Environmental Sciences 19, 2013, 494-503
- Daniel K.W., Tripathi N.K., Honda K. Artificial neural network analysis of laboratory and in situ spectra for the estimation of macronutrients in soils of Lop Buri [Thailand]. Aust. J. Soil Res. 41, 2003, pp.47–59
- Dardenne P., Sinnaeve G., Baeten V. Multivariate calibration and chemometrics for near infrared spectroscopy: Which method? Near Infrared Spectrosc., 8, 2000, pp.229–237
- Dufrechou G., Grandjean G., Bourguignon A., Geometrical analysis of laboratory soil spectra in the short-wave infrared domain: clay composition and estimation of the swelling potential, Geoderma, vol. 243-244, 2015, pp.92–107
- Fang Q., Hong H., Zhao L., Kukolich S., Yin K., Wang C. Visible and Near-Infrared Reflectance Spectroscopy for Investigating Soil Mineralogy: A Review. Hindawi Journal of Spectroscopy Volume 2018, pp. 1-14. https://doi.org/10.1155/2018/3168974
- Farmer V. C. Infra-red spectroscopy in mineral chemistry, in Physicochemical Methods of Mineral Analysis, Springer, Berlin, Germany, 1975, pp.357–388
- Feyziyev F., Babayev M., Priori S., L’Abate G. Using visible-near infrared spectroscopy to predict soil properties of Mugan Plain, Azerbaijan. Journal of Soil Science 6, 2016, pp.52-58
- Fidencio P.H., Poppi R.J., de Andrade J.C. Determination of organic matter in soils using radial basis function networks and near infrared spectroscopy, Anal. Chim. Acta 453, 2002, pp.125–134
- Geladi P., McDougall D., Martens H. Linearization and scatter correction for near infrared reflectance spectra of meat. Appl Spectrosc 39, 1985, pp.491-500
- Goetz A., Chabrillat S., Lu Z. Field reflectance spectrometry for detection of swelling clays at construction sites, Field Analytical Chemistry and Technology, vol. 5, no. 3, 2001, pp.143–155
- Gomez C., Lagacherie P., Coulouma G. Continuum removal versus PLSR method for clay and calcium carbonate content estimation from laboratory and airborne hyperspectral measurements, Geoderma 148, 2008, pp.141–148.
- Grunwald S., Thompson J.A., Boettinger J.L. Digital soil mapping and modeling at continental scalese finding solutions for global issues. Soil Sci. Soc. Am. J. 75, 2011, pp.1201-1213
- Guerrero C., Zornoza R., Gomez, I., Mataix-Beneyto, J. Spiking of NIR regional models using samples from target sites: effect of model size on prediction accuracy. Geoderma 158, 2010, pp.66-77
- Hunt G.R., Salisbury J.W. Visible and infrared spectra of minerals and rocks. Mod Geol 2, 1970, pp.23–30
- Liu W.D., Baret F., Gu X.F., Tong Q.X., Zheng L.F., Zhang B. Relating soil surface moisture to reflectance. Remote Sens. Environ. 81, 2002, pp.238–246
- Louis B.P., Saby N.P.A., Orton T.G., Lacarce E., Boulonne, L., Jolivet, C., Ratié, C., Arrouays, D. Statistical sampling design impact on predictive quality of harmonization functions between soil monitoring networks. Geoderma 213, 2014, pp.133-143
- Lucà F., Conforti M., Matteucci G., Buttafuoco G. Prediction of Organic Carbon and Nitrogen in Forest Soil Using Laboratory Visible and Nearinfrared Spectroscopy. Near Surface Geoscience, 2015
- Malley D.F., Martin P.D., Ben-Dor E. Application in analysis of soils. In Near-Infrared Spectroscopy in Agriculture, Agronomy 44. Roberts, C.A., Workman, J., Jr., and Reeves, J.B., III, Eds. American Society of Agronomy, Crop Science Society of America, Soil Science Society of America: Madison, WI, 2004, pp.729–784.
- Mammadov E., Denk M., Riedel F., Kaźmierowski, Lewinska K., Glaesser C. Visible and near-infrared reflectance spectroscopy for assessment of soil properties in the Caucasus Mountains, Azerbaijan, Journal of Communications in Soil Science and Plant Analysis, 51:16, 2020, 2111-2136.
- Martens H., Næs T. Multivariate calibration. JohnWiley & Sons, Chichester, United Kingdom, UK. 1989
- Miller C.E. Chemical principles of near-infrared technology. In ‘‘Near-Infrared Technology in the Agricultural and Food Industries’’ [P. Williams and K. Norris, Eds.], American Association of Cereal Chemists Inc., St. Paul, MN., 2001, pp.19–37
- Minasny B., McBratney A.B., Bristow K.L. Comparison of different approaches to the development of pedotransfer functions for water-retention curves. Geoderma, 93, 1999, pp.225–253
- Mortimore J.L., Marshall L.J.R., Almond M.J., Hollins P., Matthews W. Analysis of red and yellow ochre samples from Clearwell Caves and Catalhoyuk by vibrational spectroscopy and other techniques. Spectrochim. Acta A Mol. Biomol. Spectrosc. 60, 2004, pp.1179–1188
- Mouazen A.M., Kuang B., De Baerdemaeker J., Ramon H. Comparison among principal component, partial least squares and back propagation neural network analyses for accuracy of measurement of selected soil properties with visible and near infrared spectroscopy. Geoderma, 2010
- Naes T., Isaksson T., Kowalski B. Locally weighted regression and scatter correction for near-infrared reflectance data. Chem., 62, 1990, 664–673
- Nawar S., Buddenbaum H., Hill J., Kozak J., Mouazen A.M. Estimating the soil clay content and organic matter by means of different calibration methods of Vis-NIR diffuse reflectance spectroscopy. Soil & Tillage Research 2016
- Nduwamungu C., Ziadi N., Tremblay G.F., Parent L. ´ E., Tremblay G.F., Thuri`es B. Near-infrared reflectance spectroscopy prediction of soil properties: Effects of sample cups and preparation. Soil Sci. Soc. Am. J., 73, 2009, pp.1896–1903
- Nocita M. Soil Spectroscopy: An Alternative to Wet Chemistry for Soil Monitoring. Advances in Agronomy Volume 132, 2015, pp.139-159
- Norris K.H., Williams P.C., Optimization of mathematical treatments of raw near-infrared signal in the measurement of protein in hard red spring wheat. I. influence of particle size, Cereal Chemistry, vol. 61, no. 2, 1984, pp.158–165
- Owen A. Fundamentals of Modern UV-visible Spectroscopy. Agilent Technologies. Pimstein, A., Notesco, G., Ben Dor, E., 2011. Performance of three identical spectrometers in retrieving soil reflectance under laboratory conditions. Soil Sci. Soc. Am. J. 75, 2000, pp.746-759.
- Recena R., Fernández-Cabanás V.M., Delgado A. Soil fertility assessment by Vis-NIR spectroscopy: Predicting soil functioningrather than availability indices. Geoderma 337, 2019, pp.368-374
- Reeves J.B., III. Near- versus mid-infrared diffuse reflectance spectroscopy for soil analysis emphasizing carbon and laboratory versus on-site analysis: Where are we and what needs to be done? Geoderma, 158, 2010, pp.3–14.
- Robinson N. J., Kitching M., 3D distribution of phyllosilicate clay minerals in western Victoria, Geoderma, vol. 284, 2016, pp.152–177
- Saeys W., Mouazen A.M., Ramon H. Potential for onsite and online analysis of pig manure using visible and near infrared spectroscopy. Biosyst Eng 91, 2005, pp.393–402
- Sanchez P.A., Ahamed S., Carre F., Hartemink A.E., Hempel J., Huising J., Lagacherie P., McBratney A.B., McKenzie N.J., Mendoca-Santos M.L., Minasny B., Montanarella L., Okoth P., Palm C.A., Sachs J.D., Sheperd K.S., Vagen T.G., Vanlauwe B., Walsh M.G., Winowiecki L.A., Zhang G.L., 2009. Digital soil map of the world. Science 325, pp.680-681.
- Sarathjith M.C., Das B.S., Wani S.P., Sahrawat K.L., Variable indicators for optimum wavelength selection in diffuse reflectance spectroscopy of soils, Geoderma, vol. 267, 2016, pp. 1–9
- Savitzky A., Golay M.J.E. Smoothing and differentiation of data by simplified least squares procedures, Chem., 36, 1964, pp.1627–1639
- Savvides A., Corstanje R., Baxter S.J., Rawlins B.G., Lark R.M. The relationship between diffuse spectral reflectance of the soil and its cation exchange capacity is scale-dependent, Geoderma 154, 2010, pp.353–358
- Schulze D.G. An introduction to soil mineralogy. In ‘Soil Mineralogy with Environmental Applications [J.B.Dixon and D.G.Schulze, Eds.], Soil Science Society of America Inc., Madison, WI., 2002, pp.1–35
- Shenk J.S., Westerhaus M.O., Berzaghi P. Investigation of a LOCAL calibration procedure for near infrared instruments, Near Infrared Spectrosc., 5, 1997, pp.223–232
- Shepherd K.D., Walsh M.G. Development of reflectance spectral libraries for characterization of soil properties, Soil Sci. Soc. Am. J., 66, 2002, pp.988–998
- Sherman D.M., Waite T.D. Electronic spectra of Fe3þ oxides and oxyhydroxides in the near infrared to ultraviolet, Am. Mineral. 70, 1985, pp.1262–1269
- Shibusawa S., Made Anom S.W., Sato H.P., Sasao A. Soil mapping using the real-time soil spectrometer. In ‘‘ECPA 2001’’ [G. Gerenier and S. Blackmore, Eds.], Montpellier, Montpellier, France. Shonk, J. L., Vol. 2, 2001, pp.485–490.
- Soriano-Disla J.M., Janik L.J., Viscarra Rossel R.A., MacDonald L.M., McLaughlin M.J. The performance of visible, near-, and mid-infrared reflectance spectroscopy for prediction of soil physical, chemical, and biological properties. Appl. Spectrosc. Rev. 49, 2014, pp.139-186
- Stenberg B., Viscarra Rossel R.A., Mouazen A.M., Wetterlind J. Visible and near infrared spectroscopy in soil science. Agron., 107, 2010, pp.163–215
- Tian Y., Zhang J., Yao X., Cao W., Zhu Y. Laboratory assessment of three quantitative methods for estimating the organic matter content of soils in China based on visible/ near-infrared reflectance spectra, Geoderma, vol. 202-203, 2013, pp.161–170
- Udelhoven T., Emmerling C., Jarmer T. Quantitative analysis of soil chemical properties with diffuse reflectance spectrometry and partial leastsquare regression: A feasibility study. Plant and Soil 251[2], 2003, pp.319-329
- Vasat R., Kodesova R., Boruvka L., Klement A., Jaksık O., and Gholizadeh A., Consideration of peak parameters Journal of Spectroscopy 13 derived from continuum-removed spectra to predict extractable nutrients in soils with visible and near-infrared diffuse reflectance spectroscopy [VNIR-DRS], Geoderma, vol. 232-234, 2014, pp.208–218
- Varmuza, K. and Filmoser, P. Introduction toMultivariate Statistical Analysis in Chemometrics. Taylor & Francis, Boca Raton, FL., 2009
- Viscarra Rossel R.A. Fine-resolution multiscale mapping of clay minerals in Australian soils measured with near infrared spectra, Journal of Geophysical Research, vol. 116, no. F4, 2011
- Viscarra Rossel R.A., Chappell A., De Caritat P., Mckenzie N.J. On the soil information content of visible–near infrared reflectance spectra, J. Soil Sci., 62, 2011, pp.442–453
- Viscarra Rossel R.A., Webster R. Predicting soil properties from the Australian soil visible–near infrared spectroscopic database. J. Soil Sci., 63, 2012, pp.848–860
- Viscarra Rossel RA, Behrens T. Using data mining to model and interpret soil diffuse reflectance spectra, Geoderma, 2009, pp.12-25
- Viscarra Rossel R.A. Robust modelling of soil diffuse reflectance spectra by ‘‘bagging-partial least squares regression, J. Near Infrared Spectrosc. 15, 2007, pp.39–47
- Viscarra Rossel R.A., Lark R.M. Improved analysis and modelling of soil diffuse reflectance spectra using wavelets. Eur. J. Soil Sci. 60, 2009, pp.453–464
- Viscarra Rossel R.A., Adamchuk V.I., Sudduth K.A., McKenzie N.J., Lobsey C. Proximal soil sensing. An effective approach for soil measurements in space and time. Agron., 113, 2011, pp.237–282
- Viscarra Rossel R.A., Cattle S.R., Ortega A., Fouad Y. In situ measurements of soil colour, mineral composition and clay content by viseNIR spectroscopy. Geoderma 150, 2009, pp.253-266
- Viscarra Rossel R.A., Walvoort D.J.J., McBratney A.B., Janik L.J., Skjemstad J.O. Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties. Geoderma 131, 2006, pp.59-75
- Viscarra-Rossel R.A., McBratney A.B. Soil chemical analytical accuracy and costs Implications from precision agriculture, Aust. J. Exp. Agric. 7, 1998, pp.765–775
- Weng Y., Gong P.,Zhu Reflectance spectroscopy for the assessment of soil salt content in soils of the Yellow River Delta of China. International Journal of Remote Sensing 29-19, 2008, pp.511-553
- Williams P.C. Variables affecting near-infrared reflectance spectroscopy. In Near-Infrared Technology in the Agricultural and Food Industries, 1st ed., Williams, P.C. and Norris, 1987
- Wu Y., Junfeng Ji.J.C., Gong P., Tian Q., Ma H.A. Mechanism Study of Refl ectance Spectroscopy for Investigating Heavy Metals in Soils, SSSAJ: Volume 71, Number 3. 2007, pp.918-926
- Zude M., Optical monitoring of fresh and processed agricultural crops, in Contemporary Food Engineering, CRC Press, Boca Raton, FL, USA, 2008
Publication Date: October 28, 2022
Download the article